11 research outputs found

    Quantum Informational Dark Energy: Dark energy from forgetting

    Full text link
    We suggest that dark energy has a quantum informational origin. Landauer's principle associated with the erasure of quantum information at a cosmic horizon implies the non-zero vacuum energy having effective negative pressure. Assuming the holographic principle, the minimum free energy condition, and the Gibbons-Hawking temperature for the cosmic event horizon we obtain the holographic dark energy with the parameter d1d\simeq 1, which is consistent with the current observational data. It is also shown that both the entanglement energy and the horizon energy can be related to Landauer's principle.Comment: revtex,8 pages, 2 figures more detailed arguments adde

    Exact and heuristic approaches to detect failures in failed k-out-of-n systems

    Get PDF
    This paper considers a k-out-of-n system that has just failed. There is an associated cost of testing each component. In addition, we have apriori information regarding the probabilities that a certain set of components is the reason for the failure. The goal is to identify the subset of components that have caused the failure with the minimum expected cost. In this work, we provide exact and approximate policies that detects components’ states in a failed k-out-of-n system. We propose two integer programming (IP) formulations, two novel Markov decision process (MDP) based approaches, and two heuristic algorithms. We show the limitations of exact algorithms and effectiveness of proposed heuristic approaches on a set of randomly generated test instances. Despite longer CPU times, IP formulations are flexible in incorporating further restrictions such as test precedence relationships, if need be. Numerical results illustrate that dynamic programming for the proposed MDP model is the most effective exact method, solving up to 12 components within one hour. The heuristic algorithms’ performances are presented against exact approaches for small to medium sized instances and against a lower bound for larger instances

    Healthcare data analytics

    Full text link

    Integrated market selection and production planning: Complexity and solution approaches

    Get PDF
    Emphasis on effective demand management is becoming increasingly recognized as an important factor in operations performance. Operations models that account for supply costs and constraints as well as a supplier's ability to influence demand characteristics can lead to an improved match between supply and demand. This paper presents a class of optimization models that allow a supplier to select, from a set of potential markets, those markets that provide maximum profit when production/procurement economies of scale exist in the supply process. The resulting optimization problem we study possesses an interesting structure and we show that although the general problem is NP -complete, a number of relevant and practical special cases can be solved in polynomial time. We also provide a computationally very efficient and intuitively attractive heuristic solution procedure that performs extremely well on a large number of test instances

    Multi-instance learning by maximizing the area under receiver operating characteristic curve

    Get PDF
    The purpose of this study is to solve the multi-instance classification problem by maximizing the area under the Receiver Operating Characteristic (ROC) curve obtained for witness instances. We derive a mixed integer linear programming model that chooses witnesses and produces the best possible ROC curve using a linear ranking function for multi-instance classification. The formulation is solved using a commercial mathematical optimization solver as well as a fast metaheuristic approach. When the data is not linearly separable, we illustrate how new features can be generated to tackle the problem. We present a comprehensive computational study to compare our methods against the state-of-the-art approaches in the literature. Our study reveals the success of an optimal linear ranking function through cross validation for several benchmark instances

    Preface

    No full text
    corecore